Automatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation

نویسندگان

  • Yura N. Perov
  • Frank D. Wood
چکیده

We describe an approach to automatic discovery of samplers in the form of human interpretable probabilistic programs. Specifically, we learn the procedure code of samplers for one-dimensional distributions. We formulate a Bayesian approach to this problem by specifying an adaptor grammar prior over probabilistic program code, and use approximate Bayesian computation to learn a program whose execution generates samples that match observed data or analytical characteristics of a distribution of interest. In our experiments we leverage the probabilistic programming system Anglican to perform Markov chain Monte Carlo sampling over the space of programs. Our results are competive relative to state-of-the-art genetic programming methods and demonstrate that we can learn approximate and even exact samplers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Probabilistic Programming (Master's thesis, 2015)

This thesis describes work on two applications of probabilistic programming: the learning of probabilistic program code given specifications, in particular program code of one-dimensional samplers; and the facilitation of sequential Monte Carlo inference with help of data-driven proposals. The latter is presented with experimental results on a linear Gaussian model and a non-parametric dependen...

متن کامل

Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs

The idea of computer vision as the Bayesian inverse problem to computer graphics has a long history and an appealing elegance, but it has proved difficult to directly implement. Instead, most vision tasks are approached via complex bottom-up processing pipelines. Here we show that it is possible to write short, simple probabilistic graphics programs that define flexible generative models and to...

متن کامل

On sequential Monte Carlo, partial rejection control and approximate Bayesian computation

We present a sequential Monte Carlo sampler variant of the partial rejection control algorithm introduced by Liu (2001), termed SMC sampler PRC, and show that this variant can be considered under the same framework of the sequential Monte Carlo sampler of Del Moral et al. (2006). We make connections with existing algorithms and theoretical results, and extend some theoretical results to the SMC...

متن کامل

Probabilistic Programming in Julia New Inference Algorithms

In this thesis we look at the design and development of a Probabilistic Programming Language (PPL) in Julia named Turing and the challenges of implementing the Hamiltonian Monte Carlo (HMC) sampler inside the Turing framework. This dissertation starts with a review of three important fields behind the project, which are Bayesian inference, general inference algorithms and probabilistic programm...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016